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Abstract- A new device for detecting the position of
endotracheal tube is presented in this paper. This device
consists of a high sensitive linear Hall-effect sensor and a newly
designed endotracheal tube in which two small magnets are
embedded. The Hall-effect sensor can be placed on the skin of
neck over the vocal cord to detect the position of endotracheal
tube by measuring the strength of its magnetic field when the
magnet on tube passes through the glottis during intubation.
The results of our clinical tests on 38 cases of endotracheal
intubation and 15 controls of esophageal intubation show that
the device is sensitive to verify the esophageal intubation, and
that it provides a useful means for clinician to control the
inserted length easily. Due to its unique principle of operation,
the detector can be applied to all kinds of patients, especially in
pre-hospital sites.
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1. INTRODUCTION

Endotracheal intubation is a necessary therapeutic
means for many patients in operation theatre, intensive care
units (ICU) and emergency departments. In order to
establish an open airway or to maintain respiration by
mechanical ventilation, an endotracheal tube (ETT) is
intubated into the trachea of those patients. However, an
improper placement of ETT can cause serious incidence in
those departments, especially in pre-hospital situations. The
ETT may be inserted into the esophagus or pass carina into
one of the bronchi by mistake (Fig.1). It may move above
the glottis after placement due to the movement of patient or
ventilator tube. All these complications may lead to
irreversible brain damage and death [1].
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Fig.1 Improper endotracheal intubations (a) going into the esophagus,

and (b) passing over the carina.

There are several methods and devices to detect
endotracheal intubation [2], such as capnographyic detection,
FETCO2 detector [3], acoustic reflectometry [4], self-
inflating bulb and syringe detector [2]. However, there are
various limitations with these devices. Capnography is
complex to operate and is impossible in pre-hospital
situations. The accuracy and sensitivity of FETCO2 can be
influenced by ambient temperature, humidity. Additionally,
the FETCO2 detector is not reliable during cardiopulmonary
resuscitation and for patients with carbonated beverage in
the stomach [3]. The effectiveness of self-inflating bulb and
syringe detector remains suspicious in morbidly obese,
pregnant patients and infants [5,6].

Hall-effect sensor is sensitive to magnetic flux density
and plays a great role in the detection of object’s position.
This paper proposes a new detector on the basis of magnetic

detection.
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Fig.2 A schematic diagram of the detection system.
II. METHODOLGY

A. Magnetic Detector

The proposed detection system (Fig.2) uses an A3515
(Allegro Microsytems Inc.) [7], which is a temperature-
stable linear Hall-effect sensor sensitive to small changes of
magnetic flux density. It provides a voltage output that is
proportional to the applied magnetic field and has a
quiescent output voltage that is approximately 50% of the
supply voltage. The Hall-effect sensor A3515 has an output
sensitivity of 5 mV/G (Gauss), and a linearity of nearly
100% (£800Gauss). It can be combined with magnet in
different ways. In this system, the unipolar slid-by method is
utilized, in which the magnet passes the sensing surface at a
fixed distance (Fig.3). The output voltage of sensor is a
curve that can be approximated with a Gauss equation [8]

Vis)=c+ aﬁ_(d_d())zb ,
where c is the voltage offset, a is the amplification factor,
b is the form factor, and d; is the displacement offset. An
experimental gauss curve is shown in Fig.3.

The output voltage of the sensor is input to an
instrument amplifier AD620 (Amp, Fig.2, Analog Devices
Inc.) with a gain factor of 200 and is then sampled by a 12
bits analog to digital converter (A/D) at the frequency of 10
Hz. A microcontroller (MCU) controls the A/D and
calculates the distance between the Hall sensor and the
magnet. The result of calculation is displayed in the liquid
crystal display (LCD). Meanwhile, an audible alarm from a
buzzer will be heard when the position of ETT is
recognized.
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Fig.3 The experimental gauss curve for the fixed air gap, where

D is the distance between the magnet and the sensor.

B. Endotracheal Tube

Two small magnets, magnet-1 and magnet-2, are
embedded in the wall of a common ETT (Fig.2). They
generate magnetic field, which could be detected by the
Hall-effect sensor. The number and location of magnets in
the tube are based on the purpose to achieve an effective
detection. For example, magnet-1, between the cuff and the
tip of the tube, can be used to confirm the esophageal
intubation. The magnet-2, about 1.5cm to the rear cuff edge,
can be used to control the intubated length. It is a
recommended length of intubation if the vocal cord is over
the magnet-2 after intubation.

C. Principle of Operation

Assuming that the origin of a coordinate is on the neck
skin surface over the thyroid cartilage immediately above
the glottis (Fig.2). The task is to carry out a two dimensions
position detection of the ETT. Prior to intubation, the Hall
sensor is fixed on the origin.

In the X direction, when the magnet-1 gets near to the
glottis during intubation, the magnetic field strength (Vmfs,
Fig.4) detected by the sensor increases greatly. If the
variation of the magnetic field (denoted by Vchange)
exceeds a threshold value (Vth, Fig.5), an alarm will be
released, indicating that magnet-1 has passes through the
glottis. If the intubation continues, a second alarm will be



heard when magnet-2 passes though the glottis. Thus, the
inserted length of the tube could be determined.

In the Y direction, the tracheal lumen width in adults is
about 1.0-2.0cm. If the endotracheal tube is inserted into the
esophagus by mistake, the field strength detected is too
weak to cause an alarm when the magnet got through the
glottis. Thus the esophageal intubation can be verified by
this approach.

D. Clinical Evaluation

In this study, 38 patients were evaluated in elective
surgery requiring tracheal intubation between 1 Jan. and 1
Mar. 2001. Endotracheal intubation was performed in all
cases, of which 15 controls were taken esophageal
intubation with the identical ETT (in forms of diameter, type
and length).

To test the function of alarm, 15 magnetic strength
values were recorded continually by the detector in every
subject. One value was measured at the moment of alarm,
seven before and seven after that moment.

III. RESULTS

In endotracheal intubations the alarm sounded in all
38(100%) cases. In esophageal intubation, the alarm
depended on the threshold value (Vth). When the value of
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Fig.4 The strength of magnetic field from one patient during
intubation. The peak of the curve is the moment of alarm when the
magnet is passing through the glottis. Vref'is the field strength of air

in the absence of magnets.
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Fig.5 The highest value of Vchange=Vmfs-Vref (at the moment of
alarm) detected in 15 different patients. Vth (120 mV) is a threshold

value for decision-making.

Vth was low (40mV), alarm displayed in all 15 (100%)
cases. When the value of Vth increased to 120 mV, no alarm
could be heard.

The typical magnetic field strength value obtained
during intubation is shown in Fig.4. Before or after the
moment of alarm, the field strength decreased rapidly,
indicating that the field strength in trachea was very
distinguishable between the moment of alarm and other
times. In contrast, it was not so apparent in esophageal
intubation.

In 15 controls (Fig.5), the minimum variation of
magnetic field strength (185 mV) in endotracheal intubation
is distinctively greater than the maximum of variation (58
mV) in esophageal intubation. Therefore, esophageal
intubation can be verified by setting a proper threshold value
(120 mV in this study).

IV. DIscUSSION and CONCLUSION

The detector proposed in the paper is simple, portable
and easy to operate. Besides a LCD display, the device also
provides an audible alarm for the detection of tube position
during endotracheal intubation, so no special training is
required for operation.

Because this method does not depend on ventilation,
neither on the presence of exhaled carbon dioxide, the
detector has a great advantage over other detection devices.
This device can be applied to all kinds of patients, including
pregnancy woman, patients in cardiopulmonary arrest,



patients with morbidly obese, patients with carbonated
beverage in stomach, and patients with airway injury or
obstruction.

The threshold value (Vth) is determined by the depth
from the skin to the trachea at the level of vocal cold and by
the diameter of tracheal lumen. Patients at different ages
have different dimensions of trachea lumen. However, by
adjusting the threshold or being embedded a different
magnet, the detector should be suitable for all age groups.

Due to the magnetic field strength is not linear to the
distance between the magnet and the sensor, the output of
the Hall sensor, as a function of distance, is nonlinear as
shown in Fig.3. Through a ROM look-up table in MCU, the
compensation for the nonlinearity of magnetic as a function
of distance can be realized. In this table, one field strength
value is corresponded to one point of distance. After this
procedure, the result displayed on LCD will be the actual
distance between the magnet in the ETT and the Hall sensor.

This device is sensitive to detect esophageal intubation
and is easy in controlling the intubated length. However,
further clinical evaluation based on a large database should
be performed to verify its reliability, stability and accuracy.
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